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1.  INTRODUCTION 

An important problem in turbomachinery is the prediction of 

the flutter boundaries of the compressor and, in order to compute 

these boundaries, the unsteady aerodynamic forces need to be 

understood.  The aerodynamic causes of flutter in a compressor 

can be very complex, for example, the interaction between the 

flows induced by the rotor and stator, but an important class of 

flutter is caused by a relatively simple aerodynamic flow due to 

vibration of the blades on a given compressor row without the 

added complexity of exterior interactions.  This latter problem 

is the simplest unsteady aerodynamic phenomenon of interest.  In 

a compressor the oncoming velocity varies along the compressor 

blade, increasing from subsonic speeds at the hub to perhaps 

transonic speeds at the tip; it is the prediction of unsteady 

transonic flow in a compressor that is the most difficult.  This 

proposal is concerned with the prediction of flutter in a vibrat- 

ing compressor row when the flow is transonic. 

Because of the general complexity of even the simple com- 

pressor row flow, several simplifications must be made in order 

to obtain a tractable problem.  The first simplification is to 

assume that radial velocities are small relative to axial veloci- 

ties and unwrap the compressor row to form a two-dimensional 

cascade.  The second simplification is to assume, in the first 

instance, that viscous effects are negligible and that any shock 

waves present are sufficiently weak such that potential theory 

can be used.  In certain circumstances the potential equation 

model can be simplified further to yield the unsteady, high fre- 

quency transonic small disturbance (TSD) equation.  This is the 

simplest equation that will represent the dominant feature of 

the flow.  It can be noted that viscous effects can be repre- 

sented by the inclusion of a boundary layer model. 



A major problem with potential theory is that it is not 

valid (Ref. 1) when shock waves are present and, as a conse- 

quence, that shock locations are not predicted adequately for 

medium to strong shock strengths, although the agreement for 

flows with weak shocks is acceptable.  This disadvantage of the 

potential formulation can be overcome by modifying the theory 

to give the correct shock jump.  This has been done by Nixon 

(Ref. 2) for the steady small disturbance equation and by 

Kerlick, Nixon, and Ballhaus (Ref. 3) for the unsteady low fre- 

quency equation.  A more complete analysis for steady flow (Ref, 

4) indicates that such modified equations can essentially dupli- 

cate the Euler equations. 

Most of the numerical methods for predicting unsteady tran- 

sonic flow stem from the work of Ballhaus and Goorjian (Ref. 5), 

who developed an implicit algorithm to solve the low frequency 

TSD equation for isolated airfoils.  An extension of this algo- 

rithm to high frequency motion was made by Rizzetta and Chin 

(Ref. 6) .  For cascade flows a version of the Rizzetta-Chin algorithm 

v/as used by Kerlick and Nixon (Ref. 7) to develop a method for cas- 

cade flows for unstaggered cascades.  An alternative to the use 

of the unsteady TSD equation has been considered by Verdon and 

Caspar (Ref. 8) who use a time linearized perturbation of the 

full potential equation for staggered and unstaggered cascades 

in a subsonic flow.  The methods of References 5-7 can treat 

moving shock waves but it is not clear at present whether the 

time linearized method is capable of such a representation, 

since it does not possess the essential double-valued character 

at a shock location. 

In a cascade flutter analysis the dominant parameter is the 

interblade phase angle which can determine the conditions at 

which the blade will flutter.  In a numerical method, such as 

those discussed earlier, a flutter calculation can involve com- 

puting a test case for each value of the interblade phase angle. 



This is computationally expensive and, in order to reduce the 

cost, a technique developed by Nixon (Ref. 9) may be used.  This 

technique, which is based on indicial theory, decouples the cas- 

cade problem into a series of elementary problems, which are 

parametrically related, and only one solution need be computed 

numerically.  This elementary solution consists of a number of 

blades, all stationary with the exception of one blade which 

undergoes a step change.  Once computed, the full unsteady solu- 

tion for any frequency and interblade phase angle can be con- 

structed by a judicious superposition. 

The present work is concerned with the development of the 

unsteady transonic flow through a cascade.  Earlier work concen- 

trated on unstaggered cascades with the present study concerned 

with extending the method to treat staggered cascades.  These 

studies are performed under contracts N00018-81-C-0169 and 

N00019-82-C-0288.  In addition to the development of the flow 

prediction code, the ideas of Reference 9 have been tested to 

determine whether flutter prediction at transonic speeds is 

possible without resorting to an expensive series of calcula- 

tions for a range of interblade phase angles. 

The flow prediction code is a development of the Ballhaus- 

Goorjian (Ref. 5) code to include the high frequency algorithm 

of Rizzetta and Chin (Ref. 6) and to extend the geometry of the 

problem from an isolated airfoil to that of a cascade.  The 

present code is limited by computer storage to a 12-blade cas- 

cade.  The code is composed of two distinct parts, namely a 

steady flow part which is periodic in a blade-to-blade sense, 

which is solved by a relaxation algorithm, and an unsteady flow 

part which uses an alternating direction implicit (ADI) algo- 

rithm.  The unsteady part of the code requires that the inter- 

blade phase angle be specified or, if run in the indicial mode, 

that a relatively large number of blades (usually seven) be used 

for the calculation. 



I 
At present, the computer code works for unstaggered cas- 

cades but the extension to staggered cascades has not been com- 

pleted. 

In order to test the validity of the method of Reference 9, 

the flow prediction code was run in its indicial mode and the 

resulting indicial responses used to compute the magnitude and 

phase lag of lift and pitching moment coefficients.  A compari- 

son of values computed by this method and the direct calculation 

method discussed earlier shows good agreement. 

The computation time required to obtain the indicial 

response for a seven-blade cascade, and to use this data to 

compute the oscillatory lift and moment coefficients, is approxi- 

mately 500 cpu seconds on a CDC 7600 computer.  This figure is 

essentially unchanged if a range of interblade phase angles and 

frequencies are to be computed.  The direct computation requires 

250 cpu seconds for each interblade phase angle and for each 

frequency.  Hence, in a flutter calculation the method of Refer- 

ence 9 offers a considerable reduction in computation time. 

While it can be stated that the agreement of the present 

methodology with other available test cases is satisfactory, 

there are areas that need to be further investigated before the 

true worth of the technique can be determined.  These points are 

noted in the text. 

This report consists of two more or less separate parts, 

namely the development of an algorithm for the unsteady cascade 

code and the development of the indicial theory.  Although the 

latter uses the numerical data generated by the unsteady cascade 

code, it is not tied to this particular program; any suitable 

computer code can be used to calculate the necessary input. 



■ 2.  UNSTEADY TRANSONIC CASCADE CODE 

2.1  Unstaggered Algorithm 

Although a preliminary version of the cascade algorithm 

has been described in Reference 7, there have been sufficient 

modifications to the algorithm to warrant a further description. 

The basic equation is the high frequency transonic small 

disturbance (TSD) equation (see Ref. 5): 

A(})^. + 2B(j) .    = C^       +   <i> (1) ^tt     ^xt    ^xx   ^yy 

2^2-2/3 
where: A = v M 6 

CO .     . 

B = Av~ 

C = fl - M^)6"^/^ - (Y + DM'^C^ ..:'•■ 

Here <}) is the perturbation velocity potential, M  is the free 

stream Mach number, y is the ratio of specific heats, 6 is the 

thickness parameter and q is the transonic scaling parameter. 

The quantities x, y, t, <^   are in the scaled units of Reference 

5.  The reduced frequency based on chord c is v = ojc/U , where 

Lo is the frequency and U  is the free stream velocity. 

Ballhaus and Goorjian (Ref. 5) solve Equation (1) in the 

case where A = 0, which applies for reduced frequencies less 

than about 0.2 in the code LTRAN2.  The unsteady effects which 

are of interest, primarily cascade flutter, occur at reduced 

frequencies (based on blade chord) of about one to ten.  Since 

the Ballhaus-Goorjian algorithm is not designed for these fre- 

quencies, high frequency modifications must be made. 

Houwink and van der Vooren (Ref. 10) and Hessenius and 

Goorjian (Ref. 11) solve Equation (1), still with A = 0, but 

with improvements in the definition of C , and the airfoil and 
IT 

wake boundary conditions -  Rizzetta and Chin (Ref. 7) solve the 



full Equation (1), including the A<f>   term, with improved 

boundary conditions.  Their algorithm is summarized briefly 

in the following section. . 

2.2  Rizzetta-Chin Algorithm 

The Ballhaus-Goorjian algorithm has two components, a 

steady TSD equation solver by either successive line over- 

relaxation (SLOR) or approximate factorization (AF2) algo- 

rithms, and an unsteady solver based on the alternating direc- 

tion implicit (ADD algorithm.  Only the unsteady solver is 

modified for high reduced frequencies.  The airfoil boundary 

condition is applied on the split coordinate line at y = 0 

(see Fig. 1).  The algorithm approximates Equation (1) by finite 

differences at a time level t     in order to solve for the 

velocity potential function 4: at time level t   , given cj) at 

time t" (Ref. 12).  For the high frequency equation, Rizzetta 

and Chin approximate the additional term Ac})   by a first-order 

accurate three-point backward difference:    = 

n+1   „^n , ,n-l 
- ^^    -   2^      +   ^ At 
-  2 2 ^ttt + 6(At^)     (2) 

n+1/2 

The algorithm is divided into an x-sweep and a y-sweep as fol- 

lows : . .  .V ■  -- ." _.■ 

x-sweep 

2B(At)-l6x(i - ^").^. = D^f.^, + *^y .^. (3) 

y-sweep 

A(At)"^((}>''''^ - 2*'' + <})'' ^). , + 2B(At) ^6 ((t>''+^ - \) .     . 

2  yy "^        1,3 



Here, the term D f. .is the nonlinear term defined in 
X 1,3 

Equation (10) of Reference 5 which includes type-dependent dif- 

ferencing by means of a switching operator.  The only change 

from the Ballhaus-Goorjian method is the addition of the A(j) 

term in the y-sweep which is treated in such a way to retain 

conservation form.  In the low-frequency case, this algorithm 

ensures correct capture of a moving shock wave (Ref. 12).  The 

total algorithm can be readily obtained by eliminating the 

intermediate variable <^,   whereby in the subsonic (central dif- 

ferences 6  ) 
XX -       . - 

A(At)-^*"+^ - 2*^" + ^^-1). , + 2B(At)-^(*"+l - *^)i,j 

Here, TE represents the truncation error incurred by approxi- 

mately factorizing the differential operators.  For subsonic 

flow, the truncation error is given by 

2 
TE - ^^ &~^&      5^^(f> - ^^ 6"^6  6  6^(^        (6) 4B   X  XX tt^    8B   x  XX yy t^ 

The symbol 6~  indicates integration.  Equation (6) indicates 

that the new algorithm is first-order time accurate, whereas 

the low frequency algorithm is second-order time accurate. 

The pressure coefficient, C , is given by 

.  .    C  - -25^/^((f  + v^.) (7) 
■  P X     t 

and the airfoil tangency condition is 

(^y(x,0) - fj, + vf^ (8) 

where f(x,t) represents the airfoil surface.  The downstream 

boundary condition is 

' ■ (})  + v4)  = 0 (9) 
2^ T- 



and the initial condition '     ... 

<^^(0) = h(x,y)     ^  •■ (10) 

Usually h(x,y) is put equal to zero. 

The far field boundary condition of Ballhaus and Goorjian, 

namely <^   -   0   (reflective) for the upstream boundary is 

applied unchanged.   This is not really the physically correct 

boundary condition for a cascade, but the mesh is stretched to 

some 800 chords away from the airfoil, which should minimize 

the effect of the boundary condition.  This minimum influence 

of the far field boundaries has been observed in numerical exper- 

iments . , . , : ,, 

The vorticity shed at the trailing edge is represented by a 

discontinuity r(x,t) = (|)(x,+0,t) - (})(x,-0,t) in the perturbation 

potential across the blade chord line.  Following References 6 

and 11, this discontinuity is convected downstream with the free 

stream velocity, thus 

r  + vr, = 0 (11) x     t 

This ensures that the pressure is continuous across the wake. 

The initial steady flow through the cascade is calculated 

in the manner described in Reference 7. 

The unsteady solution is periodic over the whole cascade of 

N blades, so the unsteady calculation takes place on a mesh which 

is an N-fold replica of the steady-state mesh, thus the entire 

cascade is represented.  Again, the blades and wakes are repre- 

sented by split coordinate lines. ■-■ 

First, the grid is swept in the y-direction from bottom to 

top with implicit quadridiagonal solvers used on the y-constant 

lines.  The lower surfaces, interblade lines, and the upper sur- 

faces, are solved in turn. 



Next, the grid is swept in the x-direction.  For the region 

ahead of the leading edge, periodic boundary conditions are used 

with a period of the entire grid (N interblade spaces), and the 

periodic tridiagonal solver is again used.  From the leading 

edge to trailing edge, each x-constant line for each interblade 

region is solved using a separate tridiagonal inversion with 

thin airfoil boundary conditions applied at both ends.  Aft of 

the trailing edge, the periodic solver for the entire cascade 

(N blades) is used, with the upper surface potentials being 

obtained by adding the corrected circulation propagated back 

from the trailing edge according to the wake condition, Equation 

(11). 

2.3  Results for Unstaggered Mesh 

A series of computations were made for several test cases 

at both subcritical and supercritical Mach numbers.  In Figure 

2 is shown the steady flow through an advanced supercritical 

cascade designed by Sanz (Ref. 13) at a free stream Mach number 

(M ) of 0.692 and a gap/chord ratio (G) of 1.373.  The agreement 

with the results of Sanz is adequate.  It should be noted that 

it proved to be relatively difficult to converge this case. 

In Figure 3 the unsteady pressure difference over a flat 

plate oscillating in bending with reduced frequency (v) of one 

and M  = 0.5, G= 1.0, is compared to the results of Verdon and 

Caspar (Ref. 8).  The agreement is good.  For a similar case 

involving torsion, the agreement between the two methods is not 

as good, as can be seen in Figure 4.  The reason for this dis- 

crepancy is not clear at present.  Figure 5 shows the pressure 

difference for a NACA0012 section, M  = 0.5, G = 1.0, v = 1.0 
CO 

oscillating in torsion.  Again, the agreement with the result 

of Verdon and Caspar is not good. 

Figure 6 shows the unsteady pressure difference for a 

NACA0012 cascade at a supercritical Mach number of 0.75, v = 

1.0, G = 2.  Figure 7 shows the unsteady pressure difference 



for the Sanz cascade at M  = 0.707, G = 1.373, v = 1.0.  It can 
oo 

be seen that the presence of shock v;aves affects the unsteady 

flow considerably. 

A comparison of the magnitude and phase for C  and C  for 

several cascades is shown in Table I. 

3.  UNSTEADY CASCADE ALGORITHM 

In a staggered cascade the natural coordinate system is 

one in which periodicity can be applied along grid lines.  Con- 

sequently, if coordinates {E,,r\)   are defined as 

-1/3 
X = C + y sm 6  6'^ 

s .     (12) 
y = n cos 0 s 

v/here 6  is the stagger angle, the TSD equation, Equation (1), 

can be written as ■ _,. 

^*tt ^ 25^,t -    (C + Sh^^^   -   2S^^ + *^^    ■•   (13) 

.      -        2 "-^   '■■ 
where: A == A cos  6 

s ■  .' 

•   -        2 B = B cos  e 
s 

-1/3 
C = 6 '^      sm 6    . s 

The tangency boundary condition is now 

(^ (5,t) = {f^+ vf^) cos Sg + S4)^ (14) 

Equation (13) is similar to the unstaggered equation, Equation 

(1) , with the exception of the cross-derivative, -2S(})  .  This 

term can cause numerical difficulties because of the fact that 

in the (Cn) coordinate system, the domain of dependence in the 

supersonic zone, defined by the characteristics, is no longer 

contained in a simple difference stencil, as shown in Figure 8. 

A solution to this difficulty has been proposed by Rae (Ref. 14) 

10 



for steady flow, who used a seven-point formula to represent the 

cross-derivative.  Thus, 

^n =   ^^^^'^^'^^-*i-l,j+l-^*i,j+l "-  *i-l,j - '*ij 

■ "■  *i,j-l + *i4-l,j - *i+l,j-l)      (1^) 

In the relaxation scheme, data at the intermediate time level, 

denoted by ^, is given by 

■  + ^i,j-l + *i+l,j - *i+l,j-l^ 

- s2(AU-'(*i_i,j - 2^,. + ^l^^^.) (16) 

where the superscript n denotes a value at the previous time 

level.  The final result at time n+1 is given by 

^    .      =   (u^.  + (1-w) (^ - ({) ) /^.V) 
XJ XJ 

where u is a relaxation factor.  In regions of supersonic flow, 

the terra in square brackets in Equation (16) is upwind differ- 

enced.  None of the other g   differences are treated this way 

since they are due to the (J)  term in the original equation. 

Equation (1). 

Some results of using this algorithm are shown in Figure 9, 

where the steady pressure distribution through a cascade of 

NACA0012 section blades at M  =0.75 and G = 2 are shown for 
CO 

various stagger angles.  It may be seen that the effects of 

stagger are significant. 

For unsteady flow problems, a difficulty arises in incorpo- 

rating the seven-point scheme into the alternating direction 

algorithm (ADI) used in the existing code.  The difficulty is 

ii 



that the ADI algorithm sweeps first in the ? direction and then 

in the n direction, therefore at a given time level all of the 

unknowns in a row must be at the same time.  Thus the differenc- 

ing of the cross-derivative operator 5 ^ , where 

^ f(*i+l,j - ^+l,j-l -^ *i,j-l - ^ij^/^^^'^^)^  ^^^) 

must be decomposed into the appropriate time levels.  If the 

first term in square brackets on the right-hand-side of Equation 
NW SE 

(18) is denoted by 6 ^ * and the second term by &   "'^ r   then the ADI 

algorithm is as follows: . , 

^-sweep 

2 

2       gK Cn 

- S(l-A)6^^(^ + <|,'^) (19) 

n-sweep 

 2 U    -   2i>      +   i> ^   At E^ ~   * 
At 

= ^ 6  (*"+l - *^) - SA6f (*^+^ - *^) (20) 
Z      r]T] £,T) 

X is a parameter, which if equal to 1/2, gives a second-order 

accurate algorithm. 

On the upper surface of the blade the cross-derivative term 

is represented by 5^  and on the lower surface by 6^ .  This 

leads to a first-order accurate treatment of the boundary condi- 

tions . 

At the present time the above algorithm does not work; there 

seems to be a problem with the boundary conditions at the leading 

and trailing edges of the blade. 

12 



4.  APPLICATIONS OF THE INDICIAL THEORY 

The indicial theory is described in Reference 9, and is 

given as the Appendix.  In brief, if an elementary solution 

for, say, the lift coefficient C  (t) due to a motion by one 

blade in a cascade of 2N+1 blades with the other blades sta- 

tionary, the lift coefficient on the blade for the whole cas- 

cade moving with a phase lag of a  is 

C^(t) 
N 
I      C^    (t-io) 

i=-N  ^i 
(21) 

where C  (t) is the lift on the ith blade in the elementary 

solution. If the variable blade undergoes a step change in the 

elementary solution of e, then Equation (21) gives an indicial 

response C  (t), where .  ■ 

C^ (t) = (C^(t) - C^ )/c 
e o 

(22) 

and any time-dependent motion can be constructed using the 

indicial theory of Reference 15. Thus, for an oscillatory 

cascade the lift coefficient is given by 

C^(t) + C, (t)e(o) + 
o 

■   ^   de(t-x) 
,T)   _   ^^     dT (23) 

where e(t) is a specified motion.  If the motion is harmonic 

with reduced frequency v, the real and imaginary parts of C 

are given by 

Cl  ^   C^    (^) - V 
e 

AC  (T) sin vxdx 
O       £ 

{24a) 

C - V AC  (x) cos vxdx 
Li 

o e 

(24b) 

13 



where 

■ f AC^ (T) - C^ (-) - C^ (T) (25) 
.  . e        e        E 

R   I 
A similar relation appears for the moment coefficient, C , C^.. 

Turbomachinery flutter will occur in simple torsion if C 

is positive and for simple bending if C  is positive. 

■  ' 4.1  Results 

The above theory was used to compute lift and moment coeffi- 

cients for cascades with variations of interblade phase angle, 

frequency and Mach number.  The elementary solutions necessary 

for the evaluation of the sura in Equation (21) are computed 

using the unstaggered cascade code described earlier. 

In order to test the method, the indicial theory was used 

to compute the magnitude and phase angle for a cascade of 

NACA0012 sections in torsion atv=1.0, G=2 and at M  =0.5 
CO 

and 0.75.  These were compared to directly computed results, and 

this is shown in Table 2. 

The variation of the real and imaginary moment coefficients 

with interblade phase angle for a NACA0012 cascade at M^ = 0.75 

and a flat plate cascade at M  =0.5 are shown in Figure 10.  It 

can be seen that there is a considerable difference between the 

results.    ■     .   ■ 

Figure 11 shows the variation of real and imaginary mom.ent 

coefficients for a NACA0012 cascade at M^ = 0.75, G = 2 for vari- 

ous frequencies.  It can be seen that the variation with frequency 

is considerable and that at v = 1.2 the imaginary part of the 

pitching moment becomes positive, indicating a tendency to flutter, 

It proved difficult to obtain indicial responses to the 

supercritical cascade.  The reason is not clear, although it is 

possible that one of the nonunique solutions described by 

Steinhoff and Jameson (Ref. 16) may be present. 

14 



The computation time required to obtain the indicial 

response for a seven-blade cascade, and to use this data to 

compute the oscillatory lift and moment coefficients, is approx- 

imately 500 cpu seconds on a CDC 7600 computer.  This figure is 

essentially unchanged if a range of interblade phase angles and 

frequencies are to be computed.  The direct computation requires 

250 cpu seconds for each interblade phase angle and for each 

frequency.  Hence, in a flutter calculation the method of Refer- 

ence 9 offers a considerable reduction in computation time. 

5.  CONCLUDING REMARKS 

A computer code to calculate the unsteady transonic flow , 

through a cascade has been developed for unstaggered cascades. 

Although an algorithm for staggered cascades has been derived, 

it has not yet resulted in a workable computer code.  Results 

for the unstaggered case agree quite well with other solutions 

for subsonic flows, but there are some discrepancies that should 

be explained in the future. 

This computer code has been used to generate input data for 

testing the cascade indicial method of Reference 9.  The results 

look encouraging, but more testing is desirable.  The indicial 

method promises greatly reduced computer time for cascade flutter 

calculations. 
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TABLE 1-- C^ AND C^^ FOR VARIOUS CASCADES 

Section M 
OO 

G V ^L *L M 

Flat Plate 0.7 2.0 1.0 8.61 -26.2 2.068 -63.3 

NACA 0012 0.75 2.0 1.0 3.17 -57.5 1.648 -231.4 

Sanz 0.707 1.373 1.0 2.90 -51.6 1.132 -221.5 

TABLE 2.- COMPARISON OF MAGNITUDES AND PHASE ANGLES OF 
LIFT AND MOMENT COEFFICIENTS FOR NACA 0012 SECTION 

OF INTERBLADE PHASE ANGLE OF 18 0° 

M 
00 

Method of Ref. 1 Direct Calculation 

^L <^L M *M ^L *L ^M *M 

0.50 6.840 -13.2 2.040 -173.3 6.776 - 9.4 1.968 -16 9.7 

0.75 3.428 -57.7 1.812 -227.6 3.170 -57.5 1.647 -231.4 

18. 





/ 

o 

II ■6=0 
X 

■^y = ^ 

U =f 
' y    X 

-c^=0 

AIRFOIL 
SURFACE 

A 

Figure 1.  LTRAN2 mesh schematic and boundary 
conditions for an isolated airfoil. 

.c6=0 

.U 

'L 

19 



0.5 

Design 

Present Method 

0.5 1.0  X 

Figure 2.- Steady pressure distribution around a 
supercritical blade cascade; 

M^ = 0.692, G = 1.372. 

20 



< 

+J 
c 
<u 
•H 
O 

•H 

M-l 
8) 
0 
O 

(D 
U 
C 
<U 
J-l 
Q) 

m 
•H 

(1) 

a 
m 

(D 
1-1 
CU 

>i 

© 

c 

10 

-10   :^ 

-20 

■30 

-40 

1         1         i         1 

^    ;,- A- A- A- A- -A- :2l~A~A~A~A AA^-^ 

^A j/^ 

A-" 

=   0.5 

0.5 

N 

  Real   (Ref.   8) 
A Imaginary   (Ref.8) 
A A Real   (pressure) 

V Imaginary   (pressure)       - 

I                  1                  1 
0.2 0.4 0.6 O.B 1.0 

Distance from leading edge, X 

Flat plate bending 

Figure 3.- Pressure distribution for a flat plate 
oscillating in bendina- M  = 0.5, v = 1.0. 

21 



-20 

Real (Ref. 8) 

Imaginary (Ref. 8) 

Real Mco = 0.50 , 

Imaginary M^ = 0.5 0 

0.4     0.6 
X 

.0 

Figure 4.- Unsteady pressure distribution around a 
flat plate in torsion; M^^^ 0.5, G= 1.0, v = 1.0. 

22 



-20 

-15 

-10   - 

Cu 

G 
Qi 
•H 
O 

•H 

0 
D 

0) 

CO 

K*1 

0 ■ 
4-1 
CO 
c 

■5 - 

10 

15 

20 

25 

1            1 1                                           1 

- 

"      \    \ 

^*                                            ^ ^ 
^ 

\          ^^ ^V ^"""^■^■^-j^.^^   ^ ^      •^                   j-r""'?^^'^ 

•^                          /\J^^ 
X*                      /v— 'V^-'^*'^ 

'^**'**v^,^     X*                    A-^-^^^^^*"""^ 

/ ^A'" 
r           :-A" 

,^''^ 1               ''     / 
1          .^     / 
f     /      / - 

1   ^       / 
I   /        / 
' /        / 

i /      /          Real   (Ref.   8) 

'      / Imaginary    (Ref.    8) 
i;       / 

K / Real   Moo  =   0.5 

\ /              -V- Imaginary   Moc  =   0 . 5 

(/ 
|i/ 
!>• 

i 1                   I 

0.2 0.4 0.6 0.8 

X 

1.0 

Figure 5.- Unsteady pressure distribution around a 
cascade of NACA 0012 blade in torsion: 

Fi  = 0.5, G = 1.0, V = 1.0. 

23 



-25 

•20 

-15 

a, 

+j 
c 
<u 
•H 
o 
4-1 
m 
0) 
G 
o 
0) 

3 
to 
to 
Q} 

>l 

0) 
-p 

c 

■10 

-5 

 Real 

  Imaginary 

10 

15 

20 

25 
1.0 0      0.2     0.4     0.6     0.8 

Distance from leading edge, x 

NACA airfoil 0012, torsion 

Ficure 6.- Pressure distribution for a NACA 0012 blade 
oscillating in torsion; M.^, = 0.75, 'v = 1.0. 

24 



a, 
<i 

4J 
G 
O 

■H 
U 
•H 
IM 
4-1 
Q) 
O 
P 
Q) 
U 

Q) 
i4 

•H 
'a 

to 
w 
Q 
S-i 

o 
4-1 
m 
C 

•15 r- 

-10 - 

Imaginary 

-5 

10 L_ 

Real 

Figure 7.- Unsteady pressure distribution around a 
supercritical blade cascade in torsion; 

Moo = 0.70 7, G = 1.3 72, V - 1.0. 

25 



Domain of 
dependence 

i+l,j+l 

Figure 8.- Schematic of difference cell in a 
skewed coordinate system. 

26 



-0.9 

4-1 
C 
0) 
•H 
u 
•H 
4-1 
4-1 
G) 
O 
U 

Q) 
U 

w 
u 

CM 

-0.3 

1.0 

(a) e, 0° 

Figure 9.- Steady pressure distribution through a cascade 
of NACA 0012 sections; Moo = 0.75, G = 2. 

27 



-1.2 

(b)    63   =   15° 

Figure   9.-  Continued 

28 



-1.2 

1.2 
0.0   0.2   0.4    0.6    0.8   1.0 

x/c 

(c) Gg = 45°       ■ "■  " 

Fiaure 9.- Concluded. 

29 



u 

■1 L 

—                  ^^       ^ 

/                        V 

1                                          1 

1                                          1 

\ 

 '—-   Flat  Plate   M^o  =0.5 

M«,  =0.75 

1                       1 

-180 -120 -60       0 
degrees 

(a) Real part 

60       120      180 
Interblade Phase 

Angle 

Figure 10 Variation of pitching moment with 
interblade phase angle. 

30 



-p '^ 
S-l o 
to -"d 
Cu 

r-l 
t>-i u 

w ^ c 
o o 0 
o r^ u 
v^ •M 
tT' tn 1 
0 c • 
"0 E o 

H rH 

, . CJ 
1^ 
13 

•H 
fa 

CM ■M- to • ■ • 
t 1 1 

[WD I 

31 



0) 

en 
C 
« 
Q; 
(Q 
ifl 
r- 

c^  • 
o 

o    • 
t3  CN 
fU 
M    II 
X! 
!H  O 

OJ 
■4-1     '■ 
C  LD 

-H r- 

£ o 
-IJ 
■H    II 
?: 

a 
m S 

-4-1 
4-) C   G 
!-l 0)   0 
(13 ■^^   -H 
a U -P 

■H   U 
rH M-l   O 
03 M-4   m 
a 0 

cr; 0  tM 
U    rH 

.—. O 
fij -P o 

^^ c 
o < 
E U 
0 < 
G S 

U-l 
0    • 

>i 
w u 
c c 
0   0 

■H :3 
-4-> ir 
rt  o 

■H   S-l 
S-i u-i 
ra 
> T^ 

c 
1    tC 

rH 
^^ 

Q) 
s^ 
3 
en 

•H 
fa 

q.ua'aioui  BuTqaq-xd  go   q-.ii'Bd   leaH 

32 



O   D 

■P 

M 
a 
c 

en 

E 
H 

o 
u 

c 
1- 

Cn 
•rJ 

I I 

:^UBUioui  5uTqo::^xd   30  t^JCPd  AJPUTSPUII 



. APPENDIX 

NOTES ON THE COMPUTATIONS OF UNSTEADY 

TRANSONIC CASCADE FLOWS 

David Nixon* 

Nielsen Engineering & Research, Inc. 

Mountain View, California 

INTRODUCTION 

In an oscillating cascade there is by definition 

a fundamental periodicity that occurs every 2N blades 

(2N is the number of blades in the compressor row). 

The unsteady flow at each blade will have a periodic 

boundary condition, as in steady flow, but will lag 

by a phase angle of (p/N)Tr in relation to the neigh- 

boring blade, where p is an integer less than or 

equal to N whose value is determined as part of the 

flutter solution.  In a nonlinear transonic numerical 

scheme the choice is between computing the entire* 2N 

blade sequence with the usual periodic boundary con- 

ditions at the extremities or to compute the usual 

three blade cascade problem for each specified value 

of p.  These numerical calculations are computation- 

ally expensive and it is desirable to reduce the 

overall cost of a flutter calculation.  Both of these 

choices involve a large amount of computer time for 

^Research Scientist, Associate Fellow AIAA 
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practical cases, and in case of the first choice, a 

major development of a computer code.  However, it 

is possible to devise a simpler approach to the 

problem. 

The basic idea of this paper is to devise an ele- 

mentary problem in which only one blade is in motion, 

the others being fixed; the motion may be any general 

time dependent function.  This removes the problem of 

computing the flow for each blade phase angle.  This 

elementary problem is solved for a particular moving 

blade and the functional form of the velocity poten- 

tial for both space and time is then known.  Because 

of periodicity in both space and time, these elemen- 

tary solutions can be superimposed, with reparameter- 

ized space and time variables, so that the sum of the 

solutions satisfies both the basic differential equa- 

tion and the correct boundary conditions on every 

blade.  Although the most important application of 

this superposition principle is.the development of 

the correct linearization of the transonic flow equa- 

tions with discontinuities, these equations are much 

too com.plicated for an illustration of the superposi- 

tion technique.  Hence, in the following only a simple, 

subsonic problem is examined.  The general theory is 

directly extendable to discontinuous transonic flows 

using the strained coordinate theory of Nixon (ref. 1). 

35 



ANALYSIS 

Consider the cascade of 2N blades pictured in 

fig. 1, where blade J+N and blade J-N are identified. 

The equation for the perturbation velocity potential, 

(b{x,t),   due to a time dependent behavior of the 

blades, will be linear and can be represented as 

follows:     ■ ,     . 

L(x,t) (f> = 0 (1) 

Here, x is a general vector coordinate centered on 

the blade of interest, t is time, and L(x,t) is a 

differential operator with variable coefficients. 

These coefficients arise from the mean steady flow 

solution about which the flow is perturbed, are 

functions only of x, and are periodic in space with 

period of 2N blades.  The time t only occurs through 

the inclusion of time derivatives.  Such an operator 

occurs in the subsonic flow analysis of Verdon and 

Caspar (ref. 2) who use the equation 

it 
+ ^^ 

1 
3t 

+ V<|) + (Y 1)V ^\j^  + V(^ • V 

V (j . V c 
V - a^v^VtJ) = 0 

where <? is the steady state potential.  For a stag- 

gered cascade the upstream and downstream boundary 

conditions will depend on the 
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particular region of the flow that is being consid- 

ered, for example the far upstream boundary D , and 
J 

the far downstream boundary D . shown in figure 1. 

The bo'ondary conditions will depend on the steady 

far field velocity, which has spatial periodicity 

and on the phase of the waves, produced hy the oscil- 

lating cascade.  Since the individual blade flows 

are identical except for phase lag of jt , it follows 

that the far field boundary conditions are 

<h    (x ,t) = g (x ,t.)  ■ on D . ,   j = ■-N,N 
^u  u      ^u  u  3        uj -' 

*D^^D'^^^ = ^c^^c'^j)     °" %y     ^ = -^'^ 

2) 

where x , x_^ denote the location of the uiDstream u   D 

and downstream boundaries respectively and g^ and 

g  are the corresponding spatially asymptotic values 

of (j;(x,t).  The time t. is given by t . = t - jt^ 

where t  is the interblade phase lag.  The tangential 

boundary conditions are 

v.(±x,t) = f.(±x,t.)   on S,;   j = -N,N   (3; 

where v. is the normal velocity component, f . is a , 

function of the specified perturbation of blade 

geometry and S , denotes the location of the j   blade 

surface.  The ± signs denote conditions on the upper 

and lower surface of the blades, respectively.  The 

effect of the interblade phase lag is seen in 
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equations (2) and (3) where the potentials i^   ,   ^     ox 

the velocity of the j   blade at time t are given in 

terms of a function at a time t..  For blade number 0, 

periodicity can be applied on j = ±N.  In addition to 

the above boundary conditions the wake condition is 

AC (x,t) == O-on w, (4) 
P D 

where AC  is the pressure jump across the wake of the 

j   blade, w., and is a function of (j)(x,t).  Now if 

the principle of superposition holds then a variable 

d).(x.,t) can be introduced such that 
3D 

N 

(J)(x,t) =. Y^  *j(^j't) (5) 
j=-N 

wnere 

X . = X - X , 
D     :       • ■■ - 

and X. is the location of the general coordinate 

th - — system centered on the j   blade and x^ = x.  Assume 

that e. is such that 
3 

L(x,t)(^. = 0  .; (6) 

It is obvious that if equation (6) is used with 

equation (5) then equation (1) is recovered. 

The operator L(x,t) is a differential operator 

with coefficients that are functions of the steady 
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flow over a cascade and hence L(x,t) is periodic in 

the spatial dimensions.  Thus L(x,t) is the same no 

matter on which blade the coordinate system is 

centered.  Hence 

L(x,t) = L(.x ,t) (7) 

Furthermore, since t only appears in the operator 

through a derivative then the variable t can be re- 

placed by t..  Thus 

L(x,t) = L{x.,t.) (8) 

1 

Using equations (6) and" (8) then gives 

L(x.,t .) ({). = 0 (9) 

The next task is to determine suitable boundary 

conditions.  Let ' 

^j(x^,t.) = g^(x^,t.)   on D^. 

^j^^D'^j^ ^ 5D(>^D'^J^   °^ °Dj 

*j (^u't^) = 0   on D^^,   k 7^ j 

4>j (xQ,tj) =0   on D^^,        k /  j 

(10) 
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V. (±x ,t.) = y'(±x ,t.)   on S. 
J   J  J     =■   J  J        J 

V 

V . 
3 

±(x, - x^),t. 

±(x. -f x^),t. 

= 0   onS.^,   k = l,N-l j+k 

=0   onS._„   £=1,N-1 

(11) 

AC . (x . , t .) =0   on w . 
PJ  J  3 3 

where 

N 

s^"'"^ ^ESj^'j'"^ :i2) 

-N 

It should be noted that in the (x,,t.) coordinate 

system each of elementary problems for <^.   is identical 

Periodicity is applied in the j = ±N blades and 

their wakes.  The wake boundary condition is given 

by        ^ .   .    : , ■ 

^S-' ^''j ' ^k^'^jl ^  °  °^ "j+k  k =^ 1,N - 1 

AC  I (x. + xj ,t . I = 0   on w. „   £ = 1,N = 1 
Pj   3    -t^   3 3 -f^ 

(13) 

This is equivalent to keeping all blades stationary 

except the j^^ blade and allows the relevant wave 

transmission through each blade wake.  Note that the 

time is always t., the time associated with the j 

blade.  No interblade phase lag is required at this 

stage, 
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When (j) . are summed, together with the boundary 

conditions, the problem defined by equations (5), 

(10), (11), (12), and (13) is identical to the prob- 

lem defined by equations (1) , (2) , (3) , and (4) . 

Hence the problem for any time lag t between blades 

can be constructed from the _superposition of the 

elementary problem defined by equations (9), (11), 

(12), and (13).  The superposition mechanism is as 

follows. 

Let the solution to the elementary problem for 

j = 0 be given by 4> (x,t).  The solution for 4).(x,t.) 

is then given by 

(^^(Xj,t^) = <i)^(x,t) (14) 

Since the functional form of (^     with both x and t is 

known from the elementary solution for j = 0 this 

reparameterization is trivial.  The final solution 

for the zeroth blade is then given by equations (5) 

and (14); thus 

N 

(})(x,t) = Y2 '^o^^  - Xj, t - jt^)        (15) 
-N 

Thus the complete time dependent cascade flow for 

any interblade phase angle can be constructed by 

superposition of the elementary problem defined by 

equations (5), (10), (11), (12), and (13). 
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If (})(x,t) and its derivatives are continuous a 

similar relation to equation (15) can be constructed 

for the pressure coefficient C (x,t).  In addition, 

similar formulae can be derived for the lift and 

moment coefficients. 

The idea discussed above can be extended to dis- 

continuous transonic flows using the method of 

strained coordinates (ref. 1).  Results are given 

by Kerlick and Nixon (ref. 3). 

CONCLUDING REMARKS ■ 

The main contribution to the computation time for 

an unsteady calculation of cascade flutter in a 

transonic flow is the need to repeat the calculation 

for a range of interblade phase angles. The present 

analysis shows how this problem can be eliminated by 

a judicious choice of elementary solutions. 
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